Probing the top quark interaction at Colliders

Wai-Yee Keung, University of Illinois at Chicago

Collaborators:

Kingman Cheung, T.C. Yuan,

V. Barger, C.T. Yu, B. Yencho

- D. Chang, I. Phillips,
- B. Grzadkowski

outline

- Forward-backward asymmetry of the top pair production at TEVATRON
- Triple top in SM and BSM
- Azimuthal angular correlation of the top events at LHC
- Tops in LC
- Higgs coupling to top

$$A_{fb} \equiv \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)}$$

Measurements of At FB

0.20 ±0.11 stat. ±0.047 syst. (0.695/fb CDF Schwarz Thesis)

0.19 ±0.09stat. ±0.02syst. (0.9/fb D0 0712.0851)

0.17 ±0.07stat. ±0.04syst. (1.9/fb CDF 0806.2472)

0.193 ±0.065stat. ±0.024syst. (3.2/fb CDF note 9724)

Large at both CDF and D0 QCD gives ~ 0.05 only

Recent CDF analysis show mass dependent forward-backward top-pair asymmetry.

$$A^{t\bar{t}}(M_{t\bar{t},i}) = \frac{N(\Delta y > 0, M_{t\bar{t},i}) - N(\Delta y < 0, M_{t\bar{t},i})}{N(\Delta y > 0, M_{t\bar{t},i}) + N(\Delta y < 0, M_{t\bar{t},i})},$$

$$A_{FB} = 0.475 \pm 0.114 \text{ for } M_{t\bar{t}} > 450 \text{ GeV}$$

Next-to-Leading Order (NLO)

 0.088 ± 0.013

K. Cheung, WYK, and T.C. Yuan looked at the charged W' instead of the neutral Z', 0908.2589.

$$\mathcal{L} = -g' W_{\mu}^{'+} \bar{t} \gamma^{\mu} (g_L P_L + g_R P_R) d + \text{h.c.}$$

Generate large A_{FR} by 1/t exchange and by helicity matching.

Simple formulas $\sum |\mathcal{M}|^2$ (for V and S)

$$\begin{split} \frac{9g'^4}{t_{W'}^2} \Big[4\left((g_L^4 + g_R^4) u_t^2 + 2g_L^2 g_R^2 \hat{s}(\hat{s} - 2m_t^2) \right) + \frac{m_t^4}{m_{W'}^4} (g_L^2 + g_R^2)^2 (t_t^2 + 4m_{W'}^2 \hat{s}) \Big] \\ \frac{16g_s^4}{\hat{s}^2} \left(u_t^2 + t_t^2 + 2\hat{s}m_t^2 \right) + \frac{16g'^2 g_s^2}{\hat{s} t_{W'}} (g_L^2 + g_R^2) \left[2u_t^2 + 2\hat{s}m_t^2 + \frac{m_t^2}{m_{W'}^2} (t_t^2 + \hat{s}m_t^2) \right] \\ \hat{s} = (p_1 + p_2)^2, \ t = (p_1 - k_1)^2, \ u = (p_1 - k_2)^2 \qquad t_{W'} = t - m_{W'}^2 \\ u_t = u - m_t^2 = -\frac{1}{2}\hat{s}(1 + \beta\cos\theta), \quad t_t = t - m_t^2 = -\frac{1}{2}\hat{s}(1 - \beta\cos\theta) \end{split}$$

The contour of the asymmetry in $t\bar{t}$ production in the plane of $(M_{W'}, g')$. $A_{fb} = 0.12, 0.19$ and 0.26. The chiral couplings for W' - d - t are $g_L = 0, g_R = 1$.

W' and Z' Models

Asymmetric Left-Right Model

V. Barger, W.-Y. Keung, C.-T. Yu [arXiv:1002.1048], [arXiv:1102.0279]

Right-Handed W'

K. Cheung, W.-Y. Keung, T.-C. Yuan [arXiv:0908.2589], K. Cheung, T.-C. Yuan [arXiv:1445]

Non-universal Z'

S. Jung, H. Murayama, A. Pierce, J. Wells [arXiv:0907.4112], S. Jung, A. Pierce, J. Wells [arXiv:1104.3139], [arXiv:1104.4835]

W'-d-t

see also:

[arXiv:1101.5392] J. Shelton,

K. Zurek

V. Barger, W.-Y. Keung, C.-T. Yu [arXiv:1002.1048], [arXiv:1102.0279]

We begin with the gauge group $U'(1) \times SU'(2) \times SU(2)$

$$U'(1) \times SU'(2) \times SU(2)$$

$$U'(1) \rightarrow g'_1, B'$$

 $SU'(2) \rightarrow g'_2, W'$
 $SU(2) \rightarrow g_2, W$

which is broken sequentially down to the SM

Sequential approximation preserves the SM interactions

An investigation of Z-Z' mixing in such a model can be found in:

[arXiv:1101.5392] J. Shelton, K. Zurek [arXiv:1104.0083] J. Shu, K. Wang, G. Zhu

First, we rotate into B, Z' basis and have:

$$g_1' \frac{Y'}{2} B' + g_2' T_3' W_3' = \left(\frac{g_1' g_2'}{\sqrt{{g_1'}^2 + {g_2'}^2}}\right) \frac{Y}{2} B + \sqrt{g_1'^2 + {g_2'}^2} \left(T_3' - \frac{g_1'^2 \frac{Y}{2}}{g_1'^2 + {g_2'}^2}\right) Z'$$

Subsequently, we perform the usual SM rotation from B, W₃ to A, Z

$$U_Y(1)$$
 $g_1 = g_1'g_2'/g' = e/c_W$
 $SU(2)$ $g_2 = e/s_W$

After symmetry breaking, we have new Z' and W'^{\pm} bosons

New Interactions:

$$L \supset g'(\bar{t}, \bar{d})_R \gamma^{\mu} T_3' Z_{\mu}' \binom{t}{d}_R \qquad L \supset (g_2'/\sqrt{2}) \bar{t}_R \gamma^{\mu} d_R W_{\mu}'$$

$$L \supset (g_2'/\sqrt{2})\bar{t}_R\gamma^\mu d_R W_\mu'$$

- New data allows for a higher W' mass since ${\rm A_{FB}}$ anomaly is at high $M_{t\bar t}$
- \bullet assume a Higgs mechanism due to a complex triplet Higgs ϕ'

$$\langle \phi' \rangle = (0, 0, v' / \sqrt{2})^T$$
 $M_{Z'} = g'v'$
 $M_{W'} = \frac{1}{\sqrt{2}}g_2'v'$
 $M_{Z'} = \frac{g_2'}{\sqrt{2}g'} \simeq \frac{1}{\sqrt{2}}$

Z' coupling has the form:
$$g'T_3' - \frac{g_1'^2}{g'}(Q_q - T_{3,q}^{SM})$$

Dimuon search at CDF requires $M_{Z'}>500$ GeV for $g'_2=3$

$$M_{W'} = 700 \text{ GeV}$$

 $M_{Z'} = 1 \text{ TeV}$
 $g'_2 = 3$

$$M_{W'} = 700 \text{ GeV}$$
 $M_{Z'} = 1 \text{ TeV}$
 $g'_2 = 3$

$$\Gamma_{W'} = 114 \text{ GeV}$$
 $\Gamma_{Z'} = 168 \text{ GeV}$
 $\mathcal{BR}(Z' \to d\bar{d}) = 0.5$
 $\mathcal{BR}(Z' \to t\bar{t}) = 0.5$
 $\mathcal{BR}(Z' \to l\bar{l}) = 6.0 \times 10^{-4}$

The small leptonic width + broad total width will make Z' detection difficult in Drell-Yan lepton channel.

Results:

				A_{FB}	A_{FB}	A_{FB}	A_{FB}
g_2'	$M_{W'}$ [GeV]	$\sigma(t\bar{t})$ [pb]	A_{FB}	$M_{t\bar{t}} < 450 \text{ GeV}$	$450 < M_{t\bar{t}} < 800 \text{ GeV}$	$ \Delta y < 1$	$ \Delta y > 1$
3.0	700	8.45	0.06	-0.01	0.136	0.03	0.14
3.5	700	9.05	0.11	0.01	0.22	0.06	0.26
3.5	650	9.8	0.16	0.03	0.26	0.06	0.36
3.0	550	10.4	0.22	0.04	0.33	0.09	0.42
2.5	500	10.5	0.19	0.003	0.32	0.07	0.40
Data 4 19		7.70 ± 0.52	0.158 ± 0.074	-0.116 ± 0.153	0.475 ± 0.122	0.026 ± 0.118	0.611 ± 0.256
SM		$7.45^{+0.72}_{-0.63}$	0.058 ± 0.009	0.04 ± 0.006	0.088 ± 0.0013	0.039 ± 0.006	0.123 ± 0.018
NP		_	0.100 ± 0.074	-0.156 ± 0.147	0.387 ± 0.121	0.387 ± 0.112	0.488 ± 0.257

Top-Pair Invariant Mass Distribution:

Where is the top asymmetry in LHC?

- $_{\text{o}}$ Sensitive variable in this analysis: $|\eta_{\text{top}}|\text{-}|\eta_{\text{anti-top}}|$
- Define the charge asymmetry as central/de-central asymmetry in $|\eta_{top}|$ - $|\eta_{anti-top}|$:

$$A_C := \frac{N^+ - N^-}{N^+ + N^-}$$

Summary

- W', Z' models are a promising explanation to the CDF top forward-backward asymmetry
- Can be definitively tested at the LHC
 - like-sign top production
 - t+j resonances
 - chiral coupling of W'

Triple Tops

With V. Barger and B. Yencho, Phys.Lett. B687 (2010) 70

- SM production associated with W, b, or single jet (at LO)
- Weak process + initial state b-quark
 - Low rates

Top Production: SM

Small SM triple-top cross-section gets large enhancement in some new physics models

Models: MSSM

- $pp \to \tilde{g}\tilde{g}$ is typically dominant SUSY process at LHC
- "Focus Point" region: (ex: SPS 2)

$$m_{\tilde{g}} < m_{\tilde{q}_i}$$

- therefore

$$\tilde{g}
ightarrow q \bar{\tilde{q}}_{L,R}, \ \bar{q} \tilde{q}_{L,R}$$
 kinematically forbidden

Can have large BR to tops

$$\tilde{g} \rightarrow \chi_i^0 t \bar{t}$$
 $\tilde{g} \rightarrow \chi_i^{\pm} t \bar{b} (\chi_i^{\pm} b \bar{t})$

Models: MSSM

Gluino Branching Fractions				
$\tilde{g} \to 1t + \dots$	0.21			
$\tilde{g} \to t \bar{b} \chi_1^-$	0.080			
$\tilde{g} \to \bar{t}b\chi_1^+$	0.080			
$\tilde{g} \to t \bar{b} \chi_2^-$	0.024			
$\tilde{g} \to \bar{t}b\chi_2^+$	0.024			
$\tilde{g} \to 2t + \dots$	0.11			
$\tilde{g} \to t \bar{t} \chi_1^0$	0.099			
$\tilde{g} ightarrow t ar{t} \chi_2^0$	0.012			
$ ilde{g} ightarrow t ar{t} \chi_3^0$	0			
$\tilde{g} \rightarrow t\bar{t}\chi_4^0$	0			

At SPS 2 (mSUGRA benchmark):

$$m_0 = 1450$$
, $m_{1/2} = 300$, $A_0 = 0$, $\tan \beta = 10$, $\mu > 0$

Models: Z'

Additional U(1) with interaction term:

$$\mathscr{L} \supset (g_{\mathbf{X}} Z'_{\mu} \bar{u} \gamma^{\mu} P_{R} t + h.c.) + \epsilon_{U} g_{\mathbf{X}} Z'_{\mu} \bar{u}_{i} \gamma^{\mu} P_{R} u_{i}$$

Introduced to explain top-pair FB asymmetry

S. Jung, H. Murayama, A. Pierce, and J.D. Wells, arXiv:0907.4112 [hep-ph]

- ϵ_U : forces decay $Z' \to u\bar{u}$
- Best-fit: $M_{z'} = 160 \text{ GeV}, \ \alpha_x = 0.024, \ \epsilon_U < 1$
- We take: $\epsilon_U = 0.1$

Models: Z'

- Leading diagram from t-channel Z' exchange
- No associated jet, b, or W (at LO)
- Total contribution goes as ϵ_U^2

Triple-Top Cross-Sections

At the LHC, dominant production of $t\bar{t}$ in SM: $gg \to t\bar{t}$

Correlated top quarks spins \Rightarrow angular correlations of their decay products.

We will focus on azimuthal correlations.

Define the following coordinate system in c.o.m. of $t\bar{t}$ system:

 Φ is the (azimuthal) angle between the t / \overline{t} decay planes about the t momentum axis in $t\overline{t}$ rest frame

• For a given c.o.m. energy $\sqrt{\hat{s}}$:

$$\frac{1}{\hat{\sigma}_{\text{QCD}}} \frac{d\hat{\sigma}_{\text{QCD}}}{d\Phi} = \left(\frac{1}{2\pi}\right) \left[1 + \frac{C_{\text{QCD}}(\beta_t)}{(\beta_t)} \left(\frac{\pi}{4}\right)^2 \frac{(1 - 2\rho_w)^2}{(1 + 2\rho_w)^2} \cos(\Phi) \right],$$

where

$$\rho_W = (m_t^2/M_W^2)$$

$$\beta_t = \sqrt{1 - 4m_t^2/\hat{s}}$$

$$C_{\text{QCD}}(\beta_t) = \left(\frac{(1-\beta_t^2)}{\beta_t^2}\right) \left(\frac{\beta_t(33-31\beta_t^2) - (1-\beta_t^2)(33-2\beta_t^2)\tanh^{-1}(\beta_t)}{\beta_t(59-31\beta_t^2) - 2(33-18\beta_t^2+\beta_t^4)\tanh^{-1}(\beta_t)}\right)$$

• The function C_{QCD} takes the limits

$$C_{\text{QCD}} \rightarrow \left\{ \begin{array}{ll} 1 & \text{as} & \beta_t \rightarrow 0 \\ 0 & \text{as} & \beta_t \rightarrow 1 \end{array} \right.$$

This is the SM prediction at LO.

Top pair in e⁺e⁻

Precision measurements

of the top mass of its electroweak coupling

Electroweak corrections

Glover et al. hep/ph04010110 Fleischer et al. hep/ph0302259

Coupling errors for ILC and for LHC. Note LHC errors are divided by 10

CP violation in top pair production at an e+ e- collider

WYK with Chang and Phillips, Nucl. Phys. B408 (1993) 286.

$$\Gamma_{\mu}^{j} = c_{v}^{j} \gamma_{\mu} + c_{a}^{j} \gamma_{\mu} \gamma_{5} + c_{d}^{j} i \gamma_{5} \frac{p_{\mu} - p_{\mu}'}{2m_{t}} + \cdots, \quad j = \gamma, Z.$$

$$M(-+-+) = [c_{v}^{\gamma} + r_{L} c_{v}^{Z} - \beta r_{L} c_{a}^{Z}] (1 + \cos \theta)$$

$$M(-++-) = [c_{v}^{\gamma} + r_{L} c_{v}^{Z} + \beta r_{L} c_{a}^{Z}] (1 - \cos \theta)$$

$$M(-+--) = [2t(c_{v}^{\gamma} + r_{L} c_{v}^{Z}) - \frac{i}{2}(c_{d}^{\gamma} + r_{L} c_{d}^{Z}) \beta/t] \sin \theta$$

$$M(-+++) = [2t(c_{v}^{\gamma} + r_{L} c_{v}^{Z}) + \frac{i}{2}(c_{d}^{\gamma} + r_{L} c_{d}^{Z}) \beta/t] \sin \theta.$$

$$t = m_t/\sqrt{s}, \ z = m_Z/\sqrt{s}, \ \beta^2 = 1 - 4t^2 \quad r_L = (\frac{1}{2} - x_W)/[(1 - z^2)\sqrt{x_W(1 - x_W)}]$$

$$\mathcal{A}^{u.d.}(\theta) = \frac{[dN(\ell^+, \text{up}) + dN(\ell^-, \text{up})] - [dN(\ell^+, \text{down}) + dN(\ell^-, \text{down})]}{[dN(\ell^+, \text{up}) + dN(\ell^-, \text{up})] + [dN(\ell^+, \text{down}) + dN(\ell^-, \text{down})]}.$$

CP violation in the decay of neutral Higgs boson into top pair and W pair, with D. Chang, *Phys.Lett. B305 (1993) 261.*

$$\mathcal{L}_{H\bar{t}t} = -(m_t/v)\bar{t}(AP_L + A^*P_R)tH$$

$$\Delta \equiv \frac{N(t_L \bar{t}_L) - N(t_R \bar{t}_R)}{N(\text{all } t\bar{t} \text{ from } H)} = \frac{\delta^{\text{QCD}} + \delta^{\gamma} + \delta^Z + \delta^H + \delta^{WW} + \delta^{ZZ}}{\beta_t^2 A_R^2 + A_I^2}$$

$$\delta^{\text{QCD}} = (C\alpha_S/2)\text{Im}(A^2)(1 - \beta_t^2)$$

$$\Rightarrow \qquad \Rightarrow \qquad \Rightarrow$$

$$b \qquad t \qquad W_L^+ \qquad W_T^+ \qquad t \qquad b$$

$$\Rightarrow \qquad \times \qquad \Rightarrow \qquad \Leftarrow$$

Longitudinal $\sim 70\%$ Transverse $\sim 30\%$

Conclusion

- Rich physics in the top sector
- Decoding angular distributions
- Possible CP hiding place

CMS uses a kinematic likelihood technique to reconstruct top pairs in 4.7 fb⁻¹ of l+jets data at 7 TeV finding $A_C = 0.004 \pm 0.010(\mathrm{stat}) \pm 0.012(\mathrm{sys})$ [8]. They use a weighting technique to solve for the $t\bar{t}$ kinematics in 5.0 fb⁻¹ of dilepton data to find $A_C = 0.050 \pm 0.043(\mathrm{stat})^{+0.010}_{-0.039}(\mathrm{sys})$ [9]. In the same dilepton sample, the charge asymmetry based on lepton rapidities is measured to be $A_C = 0.010 \pm 0.015 \pm 0.006$.

ATLAS has examined 1.04 fb^{-1} of l+jets top events at 7 TeV using a kinematic likelihood reconstruction to find $A_C = -0.018 \pm 0.028(\text{stat}) \pm 0.023(\text{sys})$ [10]. ATLAS has also examined the asymmetry in 4.7 fb^{-1} of dilepton data [11], using a matrix element method for the top reconstruction, where they find $A_C = 0.057 \pm 0.024(\text{stat}) \pm 0.015(\text{sys})$. Combining l+jets and dilepton results, ATLAS finds a best top charge asymmetry of $A_C = 0.029 \pm 0.018(\text{stat}) \pm 0.014(\text{sys})$.